
Algorithms Exam

TIN093/DIT093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 093 and DIT 602 (GU)

Date, time: 13th March 2024, 8:30–12:30

Place: Johanneberg

Responsible teacher: Peter Damaschke, Tel. 5405, email ptr@chalmers.se

Examiner: Peter Damaschke

Exam aids: dictionary,

printouts of the Lecture Notes (which may contain own annotations),

one additional handwritten A4 paper (both sides).

Time for questions: around 9:30 and around 11:00.

Solutions: will be published after the exam.

Results: will appear in ladok.

Point limits: 28 for 3, 38 for 4, 48 for 5; PhD students: 38. Maximum: 60.

Inspection of grading (exam review): to be announced.

1



Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Start every new problem on a new sheet of paper.

• Write your exam number on every sheet.

• Write legible. Unreadable solutions will not get points.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing does not only cost time.

It may also obscure the actual solutions.

• But motivate all claims and answers.

• Strictly avoid code for describing a complex algorithm.

Instead explain in your words how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts from the course material can be assumed to be known.

You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!

2



Problem 1 (14 points)

Let C be a collection of strings with symbols from some fixed finite alphabet.

The same strings may appear many times in C. Therefore we want to

produce a “compressed” representation of C that contains only the distinct

strings, and the multiplicity of every string, i.e., the number of occurrences

in C, if it is larger than 1. Let n be the total length of all strings in C.

For instance, (exam, pass, exam, pass, pass, good, happy, celebrate, happy)

with n = 43 shall be shortened to (2 exam, 3 pass, good, celebrate, 2 happy).

Of course, this requires comparisons of symbols and counting, but if these

operations are poorly organized and redundant, one can easily use more

computation time than necessary. In fact, this basic problem can be solved

in O(n) time. We sketch the first “half” of such an algorithm:

Create a directed tree, whose edges are labeled by symbols. Every node

has a counter, which is initially 0 (when the node is created). The initial

tree consists of a root node only. Take the strings from C one by one, and

proceed as follows for every such string a1a2a3 . . . am: Start at the root and

follow the directed path of edges labeled a1, a2, a3, etc. If an edge is missing,

say after some ak, then create a path of new edges for the rest of the string,

labeled by ak+1, . . . , am, and attach it to the tree. When the string ends,

increment the counter of the node where you currently are.

1.1. Explain why this tree construction needs only O(n) time. Make use of

the fact that the alphabet is fixed. (4 points)

1.2. How do you get, from this tree, the desired list of all distinct strings

in C and their multiplicities, in O(n) time? That is, explain the procedure

and motivate its correctness and the time bound. (7 points)

1.3. Is there an algorithm that solves this problem even faster than in O(n)

time in the worst case? If you think so, give an idea how this can work.

If you do not think so, give a clear reason why it is impossible. (3 points)

3



Problem 2 (16 points)

This problem deals with compression of strings as well, but in a different

setting.

A substring of a string a1 . . . an is any string of consecutive symbols ai . . . aj ,

that is, a segment of a1 . . . an that starts at some position i and ends at some

position j.

We are given a string A of n symbols, A = a1 . . . an, and a fixed finite

set S of substrings that are known to appear frequently. We consider a

simple compression method that works as follows: Look for pairwise disjoint

substrings of A that are equal to some strings in S and replace each of them

with some special symbol. (That means, one special symbol is reserved for

every string in S.) Every replacement of a substring of length ` shortens A

by `− 1. We also say that `− 1 symbols are “saved” by that.

The problem is now to select pairwise disjoint substrings of a1 . . . an (appear-

ing in S) whose replacement saves, in total, as many symbols as possible.

We define OPT (j) as the maximum number of symbols that could be saved

if the string a1 . . . aj were given.

2.1. How would you compute OPT (j) (j = 1, . . . , n) efficiently? Explain.

(6 points)

2.2. How much time does a dynamic programming algorithm based on 2.1

need? Provide enough details to motivate your time bound, as a function

of n. Remember that S is fixed, hence its size may be considered to be a

constant. (4 points)

2.3. We may instead reduce our problem to Weighted Interval Scheduling

and solve it with the known algorithm. Explain the details and state and

motivate a time bound for the overall procedure, including the reduction.

(6 points)

4



Problem 3 (10 points)

Imagine the following scenario: We wish to solve some complicated maxi-

mization problem. The possible values of solutions are all integers k in the

range 1, . . . , n. An algorithm is available, which can test for every given k

whether a solution of value exactly k exists. This algorithm needs O(t(n))

time, for some known function t. It remains to find the largest such k.

Of course, we can run the algorithm for every k and then take the largest

positive answer. This would need O(t(n) · n) time. But it would be very

nice to apply binary search to find the largest k already in O(t(n) · log n)

time. The question arises whether this is doable.

Below we state five different conditions that describe possible additional

knowledge about the problem. Some definitions first: The term majority

means “more than half”. We call a problem convex if it has the following

property: Whenever i < k < j, and a problem instance has two solutions of

values i and j, respectively, then it also has some solution of value k.

3.1. We know nothing special about the problem.

3.2. We know that solutions exist for the majority of values k.

3.3. We know that the problem is convex.

3.4. We know that a solution exists for k = 1, and the problem is convex.

3.5. We know that solutions exist for the majority of values k, and the

problem is convex.

In each of the five cases above, answer the following questions: Can we solve

our problem in O(t(n)·log n) time? Briefly explain how you accomplish this,

or why you think that the mentioned condition is not sufficient. (2 points

for each case)

5



Problem 4 (12 points)

Recall that the Interval Partitioning problem asks to partition a given set

of intervals into k subsets, each of which contains only pairwise disjoint

intervals. Next, the Coloring problem asks to paint the nodes of a given

graph with k colors, such that any two nodes joined by an edge receive

different colors. Note that k is not constant, but some value of k is given as

a part of any problem instance. Suppose that the widely accepted conjecture

P 6= NP is true.

4.1. Give a polynomial-time reduction from Interval Partitioning to Col-

oring. That is, describe the reduction, motivate the polynomial time, and

show the required equivalence of instances. (8 points)

4.2. Can you also, conversely, reduce Coloring to Interval Partitioning in

polynomial time? Motivate your positive or negative answer by a strict

argument, without hand waving. (4 points)

6



u
u

u
u

u

u
u

u

u
u

u

u
u�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�@

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

Problem 5 (8 points)

In this exercise we consider undirected graphs G = (V,E). Remember a

few definitions: A subgraph of G is a graph H = (W,F ) with W ⊆ V and

F ⊆ E. A connected subgraph of G is a subgraph which is also connected.

A connected component of G is a connected subgraph that cannot be ex-

tended (by further nodes) to a larger connected subgraph.

In most problems we are interested in some valid solution. Now let us

consider some problems where we want all valid solutions to a given instance.

5.1. Can we always output all shortest paths between all pairs of nodes in

G is polynomial time? (3 points)

5.2. Can we always output all connected subgraphs of G is polynomial time?

(2 points)

5.3. Can we always output all connected components of G is polynomial

time? (1 point)

5.4. Can we always output all cliques in G is polynomial time? (2 points)

Motivate every answer: Either give a polynomial-time algorithm, or refer to

a known one, or give a strict argument for impossibility.

Hint: The depicted graph might help you find the correct answers to some

of these questions.

7



Solutions (attached after the exam)

1.1. For each of the n symbols in all strings, O(1) operations are done:

following the next edge in the tree or creating a new edge, and adding 1

to a counter when the symbol was the end of the string. The correct next

edge to be followed can be found by O(1) comparisons of symbols, since the

alphabet is fixed, that is, it has constant size. (4 points)

1.2. List all tree nodes systematically, e.g., by BFS. From every node v with

a counter value c > 0, follow the path back to the root, and concatenate the

labels of the traversed edges in reverse order. This yields the corresponding

string and its multiplicity c. This is correct since the counter was incre-

mented each time when a copy of the same string ended in v, and there is a

one-to-one correspondence between strings and end nodes. Since each of the

distinct strings is followed backwards only once, the time does not exceed

O(n). (7 points)

1.3. This is impossible. Every algorithm for this problem must at least read

the input: If we skip any symbol, we cannot know the entire string, hence

the correct output cannnot be guaranteed. (3 points)

2.1. We may formally set OPT (0) = 0. To compute OPT (j), we distinguish

some cases. If no substring from S ends at aj , then OPT (j) = OPT (j− 1).

If some substrings from S end at aj , we may or may not select one of them

for replacement. In more detail, if ai . . . aj is in S and we replace it with its

special symbol, then we save OPT (i− 1) + j − i symbols. Hence OPT (j) is

the maximum of OPT (j − 1) and of all expressions OPT (i− 1) + j − i that

satisfy the mentioned condition. (6 points)

2.2. For every position j we must check which strings from S end there,

as substrings of the given string. Since S contains a constant number of

strings of some constant maximum length, this takes O(1) time. By the

same argument, the number of operations needed to calculate every OPT (j)

is O(1), hence the overall time is O(n). Backtracing (to recover an actual

solution) does not exceed this time bound, as usual. (4 points)

2.3. For all strings in S we determine their occurrences in A. For every such

occurrence we create a corresponding interval and assign to it a weight equal

to its length minus 1. For the reason mentioned in 2.2, all this is doable

in O(n) time, and O(n) intervals are constructed. Hence the algorithm for

8



Weighted Interval Scheduling runs in O(n) time as well. – This is essentially

the same algorithm as in 2.2, just described differently. (6 points)

3.1. Impossible. Since arbitrary combinations of Yes and No can appear,

we must test all n values of k in the worst case. (2 points)

3.2. This does not help. Solutions may exist for all k in the range 1, . . . , n/2,

but still we have to find the largest solution among the remaining values

k > n/2, thus we are back to case 3.1, with ca. n/2 values. (2 points)

3.3. This does not help either. A solution might exist for only one value k,

and in the worst case we find it only be testing all values. (2 points)

3.4. The condition implies that solutions exist for all k ≤ m and do not exist

for all k > m, where m is some unknown cut-off value. We can determine

m by binary search: If some k has a solution (has no solution) then m ≥ k

(m < k) can be concluded. (2 points)

3.5. The condition implies that a solution exists for k = bn/2c. Now we can

continue as in 3.4. The only difference is that the left end of the range to

be searched is k = bn/2c rather than k = 1. (2 points)

4.1. Represent every interval by a node, and for every pair of intersecting

intervals, create an edge joining the corresponding nodes. Obviosuly, this

can be done in polynomial time. If a partitioning into k subsets (as specified)

exists, this yields a partitioning of the nodes into k subsets each of which

is an independent set. Hence we can paint all nodes of such a subset with

the same color, such that k colors are sufficient. Conversely, if a k-coloring

exists, we can partition the node set into k subsets being independent. This

partitions the set of intervals into k subsets whose intervals are pairwise

disjoint. (8 points)

4.2. The Coloring problem is NP-complete (even for every fixed k > 2, and

“even more so” when k is part of the instance). A polynomial-time reduction

to Interval Partitioning would imply NP-completeness of the latter problem.

But this problem is also known to be in P, a contradiction. Hence the answer

is negative. (4 points)

9



5.1. No. Consider graphs as in the hint, and shortest paths between the

leftmost and rightmost node. In every other step we have the choice between

two nodes, and every combination yields some shortest path. Hence already

the number of shortest paths is exponential. (3 points)

5.2. No. This follows instantly from 5.1, since every path is also a connected

subgraph. (2 points)

5.3. Yes, even in linear time; this was shown in the course. (1 point)

5.4. No. If G itself is a clique, then every subset of nodes induces a clique,

hence the number of cliques is exponential. (2 points)

An alternative argument is: The Clique problem is NP-complete. If we

could list all cliques in polynomial time, we could also select one clique of

the desired size in the end. However, this argument relies on the conjecture

that P is not equal to NP.

10


