
Algorithms Re-Exam

TIN093/DIT093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 093 and DIT 602 (GU)

Date, time: 25th August 2022, 14:00–18:00

Building: Johanneberg

Responsible teacher: Peter Damaschke, Tel. 5405, email ptr@chalmers.se

Examiner: Peter Damaschke

Exam aids: dictionary,

printouts of the Lecture Notes (possibly with own annotations),

one additional A4 paper (both sides).

Time for questions: around 15:00 and around 16:30.

Solutions: will be published after the exam.

Results: will appear in ladok.

Point limits: 28 for 3, 38 for 4, 48 for 5; PhD students: 38. Maximum: 60.

Inspection of grading (exam review): to be announced.

1

Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Start every new problem on a new sheet of paper.

• Write your exam number on every sheet.

• Write legible. Unreadable solutions will not get points.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing does not only cost time.

It may also obscure the actual solutions.

• But motivate all claims and answers.

• Strictly avoid code for describing a complex algorithm.

Instead explain in your words how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts from the course material can be assumed to be known.

You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!

2

Problem 1 (12 points)

We are given an undirected connected graph G = (V,E) and a subset P ⊂ V

of 2k nodes. The problem is to pair up the nodes in P , that is, form k pairs

of nodes, and connect every such pair {u, v} by some path with end nodes

u and v. The only condition is that no two paths may share edges.

(Do not worry about the motivation of this problem. It appears as a subtask

in some other route planning problems.)

Surprisingly, there always exists a solution, and it can be found by a greedy-

like algorithm: Start with an arbitrary pairing and an arbitrary system of

paths for it. Then choose two arbitrary paths that share some edge x − y,

such as:

s− . . .− x− y − . . .− t and u− . . .− x− y − . . .− v.

Replace them with two new paths

s− . . .− x− . . .− u and t− . . .− y − . . .− v

which do not use the edge x − y anymore. Repeat this step until no two

paths share edges anymore.

1.1. Show that this algorithm always terminates and produces some valid

solution in polynomial time. You need not prove a “good” specific time

bound here (this would be quite laborious); it suffices to argue why the

algorithm is correct and the complexity is polynomial.

Hint: It might be useful to study how the total length (number of edges) of

all paths behaves. (8 points)

1.2. Finally we make the problem stricter: As before, the k paths in the

solution must not share any edges. Moreover, every path in the solution must

be a shortest path between its end nodes. Modify the above algorithm such

that it solves this stricter problem, still in polynomial time, and motivate

why your modification works correctly. (4 points)

3

Problem 2 (9 points)

Let X = (x1, x2, . . . , xn) be a given sequence of numbers, and let J be some

positive constant. A subsequence of X is any selection of numbers from X,

not necessarily consecutive, but appearing in the given order. More formally,

we may choose s indices k1 < k2 < . . . < ks ≤ n, and the subsequence with

these indices is then (xk1 , xk2 , . . . , xks). A subsequence is called monotone

if xk1 ≤ xk2 . . . ≤ xks . A jump is a pair of neighbored elements in the

subsequence whose difference is at least J . The problem is now to find a

monotone subsequence of X with a maximum number of jumps.

Example: LetX = (1, 3, 4, 7, 6, 12, 8, 15, 13, 18) and J = 4. Then (1, 6, 12, 18)

is monotone, and every pair of neighbors is a jump. Another solution with

3 jumps is (3, 8, 13, 18), and there are more possible solutions. But no sub-

sequence with 4 jumps exists.

2.1. Develop a dynamic programming algorithm for the problem. As the

idea is perhaps not totally obvious, we propose already a definition of a

function: For every index k, let OPT (k) be the maximum number of jumps

in a monotone subsequence that ends exactly with xk. – Now describe how

you compute the values OPT (k) efficiently, and argue why your method is

correct. You need not describe the backtracing. (6 points)

(Please follow this hint and do not attempt to find a simple greedy algorithm

instead, as this is doomed to failure.)

2.2. Give and motivate a time bound for your computation. Of course, it

should be a “small” polynomial bound. You can assume arithmetic opera-

tions with numbers to be elementary operations. (3 points)

4

Problem 3 (10 points)

Let G = (V,E) be an undirected graph with n nodes and m > n log2 n

edges. Moreover, suppose that every node in V is represented by a point

in the plane, with known coordinates. Let the length of any edge (u, v) in

E be defined as the usual Euclidean distance of the points u and v in the

plane. Now we want to find the shortest edge in E. Note that the lengths

of the edges are not explicitly given, we can only compute them from the

coordinates of their nodes. Since m > n log2 n, it would be nice to avoid

naive computation and comparison of all edge lengths.

Take the known O(n log n)-time algorithm for the Closest Points problem

and modify it such that it solves the above problem within the same time

bound. It suffices to explain informally what you change in the algorithm,

and why this modification is correct and does not increase the time bound.

Problem 4 (15 points)

A triangle in a graph is a set of three nodes u, v, w such that all edges

uv, uw, vw exist (in other words, a clique of three nodes). A graph without

triangles is called triangle-free. We want to show that the Independent Set

problem remains NP-complete when it is restricted to triangle-free graphs.

To this end we use the following reduction. LetG = (V,E) be any undirected

graph with n nodes and m edges. We replace every edge (u, v) in E with

a path u − x − y − v, where x and y are two fresh nodes. (For clarity: for

every edge in E, two additional nodes are created; these are together 2m

new nodes.) Let H denote the resulting graph.

Prove the following statements:

• H is triangle-free.

• The reduction runs in polynomial time.

• G has an independent set with at least k nodes if and only if H has

an independent set with at least k +m nodes.

Finally argue why these statements together imply the NP-completeness of

Independent Set for triangle-free graphs.

5

Problem 5 (14 points)

We are given a tree T with n nodes, where every edge has some given positive

length. A vehicle is able to traverse the edges of T , in either direction and

arbitrarily often. Starting from some fixed node r, we want the vehicle

to visit every node of T at least once and finally return to r. The goal

is to minimize the total length of such a tour. We denote this problem

TOUR(T, r).

Let r1, . . . , rd denote the nodes adjacent to r, and let Ti be the subtree that

would be obtained by deleting the edge rri, and which contains the node ri.

The following recursive algorithm for TOUR(T, r) is proposed:

For i = 1 to d, go from r to ri, then perform an optimal tour that solves

TOUR(Ti, ri), and go from ri back to r.

5.1. Argue why this algorithm yields indeed a valid and optimal solution to

the TOUR(T, r) problem. (12 points)

Hint: It is advisable to argue in a few steps (and motivate every step):

(a) Why is the solution valid, i.e., satisfies the constraints of the problem?

(b) How often does this algorithm traverse every edge?

(c) In an arbitrary(!) valid solution, how often do we have to traverse every

edge at least?

(d) Now conclude optimality. But remember that the edges also have some

given lengths.

5.2. What is the running time of this algorithm, and why? (2 points)

6

Solutions (attached after the exam)

1.1. An initial set of such paths can be found in polynomial time, e.g.,

by BFS. We can get paths without self-crossings, that is, every path visits

every node at most once. Let L be the sum of lengths of all chosen paths.

Since the paths are not self-crossing, L is bounded by some polynomial of

the graph size. In every step we get rid of two occurrences of some edge,

and the remaining edges existed already in the solution before that step. It

follows that L decreases by 2. This can happen only polynomially often,

and every step needs only polynomial time, for finding a shared edge and

for changing the paths. The algorithm stops only when no two paths share

an edge anymore, that is, the final solution is always valid. (8 points)

1.2. Run the algorithm from 1.1, but in the end, check every path whether it

is a shortest one. If not, replace it with a shortest path (which is computable

in polynomial time). Clearly, every such step decreases L by at least 1. But

the new patha may share edges again. Therefore we run the algorithm from

1.1 once more. This is iterated until all our k paths are shortest paths. Since

L strictly decreases each time, the overall time remains poiynomial, as in

1.1. (4 points)

2.1. For k = 1, . . . n we proceed as follows. We start with OPT (k) := 0,

accounting for a subsequence that starts with xk and, thus, has no jumps so

far. Every subsequence that has started earlier must have some last element

xi, i < k, before xk. If xk − xi ≥ J , we get a subsequence ending with xk,

and with OPT (i) + 1 jumps. Finally, OPT (k) is the maximum of all these

jump numbers. Since we consider all possible i < k, and it is pointless to

extend a monotone subsequence without making a jump, we cannot miss

any potential solution. (6 points)

2.2. Since n values OPT (k) are computed, and for each of them, the maxi-

mum of k−1 < n earlier values is taken, the time bound is O(n2). – Remark:

One can combine dynamic programming with binary search and achieve an

O(n log n) time bound, but this better result is not expected here. (3 points)

3. Let d denote the minimum length of the edges that do not cross the

separating line S. We partition the stripe of width 2d, with S in the middle,

into squares of side length d, and find the shortest edge with end points

in (directly or diagonally) neighbored squares at different sides of S. (No

edges shorter than d can have their end points in remote squares.) Finally

7

we take the minimum of d and all these edge lengths. The overall time

remains O(n log n) because the recurrence T (n) = 2T (n/2) + O(n) applies.

(10 points)

4. A fresh node cannot be in a triangle, since its two neighbors are not

adjacent. Hence any triangle in H consists of nodes from G, but they are

not adjacent either.

The time is polynomial (even linear), since every edge is processed only once.

Assume that G has an independent set I of k nodes. We construct a node

set J as follows. Initially J := I. For every edge uv in G, let u− x− y − v

be the constructed path. At most one of u, v is in I, say v /∈ I. We add y

to J . Finally J has k +m nodes and is independent.

Conversely, assume thatH has an independent set J of k+m nodes. Assume

that two nodes u, v ∈ J ∩ V form an edge uv in G. Since J is independent,

this means x, y /∈ J , and we can replace v with y in J . Iterating this step

we get rid of adjacent nodes in J ∩ V and make this set independent in G,

while keeping J independent, too. At most m fresh nodes are in J , thus

|J ∩ V | ≥ k.

The Independent Set problem is known to be NP-complete, and the con-

struction fulfills all criteria of a polynomial-time reduction, hence the prob-

lem remains NP-complete even when restricted to triangle-free graphs.

(15 points)

5.1. We follow the suggested steps.

(a) For every i, a subtour starts and ends in r and visits all nodes of Ti.

Hence the concatenation of these d tours is a tour that visits all nodes of T .

(b) The edge rri is obviously traversed exactly twice. Since this holds on

every recursion level, this statement is also true for every edge in T .

(c) Let uv by any edge of T , where u is the last node on the unique path

from r to v. In order to visit v, we must sometimes go from u to v. In order

to return to r, we must sometimes go from v to u. Hence any solution has

to use every edge at least twice.

(d) Due to (c), the minimum length of any valid tour is at least twice the

sum of lengths of all edges. Due to (b), the proposed tour is no longer than

that. (12 points)

5.2. The standard argument shows that the time is O(n): Every edge is

processed O(1) times, and a tree with n nodes has n− 1 edges. (2 points)

8

