
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391

Wednesday, 19 August 2020

Exam supervisor: N. Piterman (piterman@chalmers.se, 073 856 49 10)

(Exam set by N. Piterman, based on the course given January-March 2020)

Material permitted during the exam (hjälpmedel):

As the exam is run remotely we cannot realy restrict your usage of mate-
rial.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU

28�41 3 G
42�55 4 G
56�70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU

40�59 3 G
60�79 4 G
80�100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

• You should be monitored on the dedicated zoom channel while taking
the exam!

• Submit the exam solution as a PDF �le on Canvas. The solution
should be typeset using your favourite software. No scanned hand-
written notes or diagrams are allowed.

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

• Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

1

• Answer each question on a new page. Glance through the whole paper
�rst; �ve questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justi�ed by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

2

Q1 (9p). Below is the pseudo-code of a program with two threads, p and q. The
variables x and y are shared between p and q. The function f(·, ·)
accepts two integers as parameters and returns an integer. You do not
need to know anything else about f .

int x = 1000;
int y = 1000;

p q

p1: while(x>0) { q1: while(y>0) {
p2: x = x - 1; q2: y = y - 1;

} q3: x = f(x,y)
}

The labels p1, p2, q1, q2 and q3 are given only for ease of reference.

(Part a) Construct a scenario for which the program terminates.(4p)

(Part b) Does the program terminate for all scenarios? (5p)

Answers:

(Part a) Process q runs until y is 0 and terminates. Then if x ≤ 0
process p terminates as well. Otherwise, the only possible change to x
is p reducing it. Hence, x will reduce below 1.

(Part b) Yes. The program terminates for all scenarios. The only
change from the reasoning above is that if p is allowed to run long
enough without q interfering then p will terminate �rst.

3

Q2 (11p). The pseudo-code below tries to solve the critical section (CS) problem
with two threads, p and q. Remember that CS must exit after a �nite
time, but NCS may loop.

The label pi can mean the command that follows pi, or the proposition
that thread p is at pi, and the next command p will execute is pi.

boolean t= false; boolean tp= false; boolean tq= false;

p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: tp= true; q2: tq= true;
p3: t= false; q3: t= true;
p4: while(tq!= t) { }; q4: while(tp== t) { };
p5 //CS (critical section) q5 //CS (critical section)
p6: tp= false; q5: tq= false;

} }

(Part a) Show that (p2 ⇐⇒ ¬tp) is an invariant of the program.
That is, it always holds. Show that it holds initially and that it is
preserved under every transition of process p. (2p)

Answer: It holds initially. The transition from p2 to p3 sets tp to
true, keeping the invariant true. The transition from p6 to p2 sets tp

to false, keeping the invariant true. Other transitions do not change
tp and the truth value of p2.

Use the invariant (q2 ⇐⇒ ¬tq) without proof. Notice that these are
equivalent to ((p3 ∨ p4 ∨ p6) ⇐⇒ tp) and ((q3 ∨ q4 ∨ q6) ⇐⇒ tq).

(Part b) Show that (p4 =⇒ ¬t ∨ q4) is an invariant of the pro-
gram. Show that it holds initially and that it is preserved under every
transition of every process. (3p)

Answer: The invariant holds if p is not in location 4.

When p moves into location 4 (i.e., p4 becomes true) it does so by
setting t to false. Thus establishing the invariant.

We care only about transitions of q if they change q4 or change t. Thus,
move from 3 to 4 and move from 4 to 6.

The move of q from 3 to 4 sets q4 to true. Thus if q moves into q4 the
invariant holds.

Consider the transition of q from 4 to 6 and the case that p is in location
4 (i.e., from (a) tp is true). When tp is true, process q can move to
location 6 only if t is false. Thus, after this transition the invariant is
established.

The invariant (q4 =⇒ t ∨ p4) holds as well.

4

(Part c) Show that (p6 =⇒ ¬t ∨ q4) is an invariant of the program.
(3p)

Answer: We know that p4 =⇒ ¬t∨ q4 is an invariant. When p moves
from location 4 to location 6 both t and q's location do not change.
Thus, the invariant is established.

We care only about transitions of q if they change q4 or change t. Thus,
move from 3 to 4 and move from 4 to 6.

The move of q from 3 to 4 sets q4 to true. Thus if q moves into q4 the
invariant holds.

Consider the transition of q from 4 to 6 and the case that p is in location
6 (i.e., from (a) tp is true). When tp is true, process q can move to
location 6 only if t is false. Thus, after this transition the invariant is
established.

Use the invariant (q6 =⇒ t ∨ p4) without proof.

(Part d) Show that the program maintains mutual exclusion. (3p).

Answer: Suppose that both processes are in locations 6 at the same
time. It follows from (c) that both ¬t∨ q4 and t∨p4 hold. However, by
assumption p6 and q6 hold. Thus, t must be true and false at the same
time. This is impossible.

5

Q3 (17p). The program from Q2 is repeated below for convenience.

boolean t= false; boolean tp= false; boolean tq= false;

p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: tp= true; q2: tq= true;
p3: t= false; q3: t= true;
p4: while(tq!= t) { }; q4: while(tp== t) { };
p5 //CS (critical section) q5 //CS (critical section)
p6: tp= false; q5: tq= false;

} }

From the onset, we expect each state to be a quintuple, (pi, qj , tp, tq, t),
where i and j range over {2, 3, 4, 6}, and tp, tq, t are Boolean. From
Q2 we know that tp and tq can be deduced from pi and qj . Hence,
we use states of the form (pi, qj , t). As transitions into p4 and q4 set
t, we can ignore the value of t when both p and q are in locations 2 or
3. Only 16 states are reachable.

Notation: We denote the value of t by x when we do not care about it.
For example, (p2, q2, x) correponds to either (p2, q2, false) or (p2, q2, true).

Here is a partial state transition table for the program above. As men-
tioned, only 16 states are reachable from the initial state (p2, q2, false).

state new state if p moves new state if q moves

s1 (2, 2, x) (3, 2, x) = s3

s2 (2, 3, x) (2, 4, true) = s5

s3 (3, 2, x) (4, 2, false) = s7 (3, 3, x) = s4

s4 (3, 3, x)

s5 (2, 4, true) (2, 6, true) = s6

s6 (2, 6, true) (2, 2, x) = s1

s7 (4, 2, false) (6, 2, false) = s8

s8 (6, 2, false) (2, 2, x) = s1

s9 (4, 3, false)

s10 (4, 4, false)

s11 (4, 4, true)

s12 (4, 6, false) (4, 2, false) = s7

s13 (6, 3, false) (2, 3, x) = s2

s14 (6, 4, true) (2, 4, true) = s5

s15 (3, 4, true)

s16 (3, 6, true) (3, 2, x) = s3

(Part a) Fill in the blank entries in the table. (8p)

6

(Part b) Explain why the protocol maintains mutual exclusion. (2p)

(Part c) Explain why under fair scheduling the protocol avoids star-
vation. (7p)

Answer:

state new state if p moves new state if q moves

s1 (2, 2, x) (3, 2, x) = s3 (2, 3, x) = s2

s2 (2, 3, x) (3, 3, x) = s4 (2, 4, true) = s5

s3 (3, 2, x) (4, 2, false) = s7 (3, 3, x) = s4

s4 (3, 3, x) (4, 3, false) = s9 (3, 4, true) = s15

s5 (2, 4, true) (3, 4, true) = s15 (2, 6, true) = s6

s6 (2, 6, true) (3, 6, true) = s6 (2, 2, x) = s1

s7 (4, 2, false) (6, 2, false) = s8 (4, 3, false) = s9

s8 (6, 2, false) (2, 2, x) = s1 (6, 3, false) = s13

s9 (4, 3, false) no move (s9) (4, 4, true) = s11

s10 (4, 4, false) no move (s10) (4, 6, false) = s12

s11 (4, 4, true) (6, 4, true) = s14 no move (s11)

s12 (4, 6, false) no move (s12) (4, 2, false) = s7

s13 (6, 3, false) (2, 3, x) = s2 (6, 4, true) = s14

s14 (6, 4, true) (2, 4, true) = s5 no move (s14)

s15 (3, 4, true) (4, 4, false) = s10 no move (s15)

s16 (3, 6, true) (4, 6, false) = s12 (3, 2, x) = s3

For (b) states (6, 6, false) and (6, 6, true) are not reachable.

For (c) from s4 there is a choice whether to go to s9 or s15. If going
for s9, then there is no choice but to continue to s11, s14, s5 now we
have to show that q will enter the critical section. This is if either we
go directly to s6 or s15, s10, s12. The case of going from s4 to s15 is
dual.

7

Q4 (14p). In this question we create a barrier in erlang. The setup should include
a number (10) of clients each doing some work in rounds. They should
all be doing the work on round i at the same time and none of them
can proceed to round i+ 1 before all are done with round i.

The role of the barrier is taken by a server that interacts with the
clients. The server sends a message to the clients telling them to start
the i-th round and collects messages that notify it of the end of the
work of each client on round i. After all clients have completed round
i, the server initiates round i+ 1.

Once all clients have �nished 100 rounds, the server should ensure that
all clients have terminated before terminating itself.

Your task is to implement the server and the client.

(Part a). Implement the server. Explain the role of the elements of
the server's state. (6p)

(Part b). Implement the client. Explain the role of the elements of
the client's state (if exists). (4p)

(Part c). Implement the initialization. You can either (a) initialize
the server with the IDs of all the clients and have it notify them to
start round 1 or (b) initialize the clients directly at round 1. (4p)

Answer:

1 start_server(Num) ->

2 Pid = spawn(fun() -> exam:server(Num, 0 , 1 ,[]) end),

3 catch unregister(server),

4 register(server, Pid).

5

6 % This solution is parameterized for every possible number of clients

7 % This is not required from your solution.

8 % Parameters

9 % Total number of clients (does not change after initialization)

10 % Number of messages received in this round

11 % Number of round (message to be received)

12 % List of Id-s of clients who already responded

13 server(S,S,100,List) ->

14 % send exit message to all clients

15 [Id ! { exit } || Id <- List];

16

17 server(S,S,M,List) when M < 100 ->

18 % initiate round M+1

19 [Id ! { M + 1, self() } || Id <- List],

20 server(S, 0, M + 1,[]);

21

8

22 server(S,N,M,List) when N < S ->

23 % collect the finish notification from one client. Log their id.

24 receive

25 {M, From} ->

26 server(S, N + 1, M, List ++ [From]);

27 {_, _} -> exit(1);

28 { exit } -> exit;

29 { _ } -> exit(1)

30 end.

31

32 start_client() ->

33 Pid = spawn(fun() -> exam:client() end),

34 Pid ! {1, server }.

35

36 start_client(1) ->

37 start_client();

38

39 start_client(Num) when Num > 1 ->

40 _ = Num,

41 start_client(),

42 start_client(Num - 1).

43

44 client() ->

45 receive

46 { Msg, From } ->

47 % this is the part where the client does the work.

48 From ! { Msg , self() },

49 client();

50 { exit } -> exit;

51 { _ } -> exit(1)

52 end.

53

54 main() ->

55 Num = 10,

56 start_server(Num),

57 start_client(Num).

9

Q5 (19p). You are designing two classes that are supposed to access the same
resource as readers and writers. Writers repeatedly (forever) compute
data and then write to the resource. Readers repeatedly (forever) read
from the resource and then process the data they collected. Readers
can work on the same data several times if it has not been changed since
their last access. Readers can all access the resource simultaneously
but writers need exclusive access.

Here is a code skeleton that includes both classes and their initializa-
tion.

class ReadersWriters {

final static int NumReaders = 5;

final static int NumeWriters = 2;

// Synchronization declarations to be defined...

static class Reader extends Thread {

public void run() {

// add synchronization

while (true) {

read();

process();

}

}

private void read() {

// This function reads from the resource. // No need to implement it.

}

private void process() {

// This function processes the data acquired.

// It may take a long time. // No need to implement it.

}

}

static class Writer extends Thread {

public void run() {

// add synchronization

while (true) {

compute();

write();

}

}

10

private void compute() {

// This function prepares data to be written to the resource.

// It may take a long time. // No need to implement it.

}

private void write() {

// This function writes to the resource. // No need to implement it.

}

}

// Starting the readers and writers

public static void main(String[] args) {

for (int i = 0; i<NumReaders; i++) {

new Reader().start();

}

for (int i = 0; i<NumWriters; i++) {

new Writer().start();

}

}

}

Your task is to implement the following parts:

(Part a). Write the declarations of the variables you will use for syn-
chronization (you may use either locks or semaphores). Pay attention
to types, initialization, and scope. (3p)

(Part b). Complete the implementation of the method run() of the
class Reader according to the description above. (5p)

(Part c). Complete the implementation of the method run() of the
class Writer according to the description above. (5p)

(Part d). You increase the number of readers to 1000 and notice that
writers never get a chance to change the resource. Add an additional
mechanism that will block new readers from accessing the resource
once a writer is ready to replace the data. (6p)

Answer:

Variable de�nitions (including for part d):

static Lock lock = new ReentrantLock();

static Integer permits = NumReaders;

static Integer waiting = 0;

The run part of the reader:

11

public void run() {

while (true) {

boolean acquired = false;

lock.lock(); {

if (permits > 0 && waiting == 0) {

permits = permits - 1;

acquired = true;

}

} lock.unlock();

if (acquired) {

read();

lock.lock();

permits = permits + 1;

lock.unlock();

compute();

} } }

The run part of the writer:

public void run() {

boolean imwaiting = false;

while (true) {

boolean acquired = false;

produce();

lock.lock(); {

if (!imwaiting) {

imwaiting = true;

waiting = waiting + 1;

}

if (permits >= NumReaders) {

permits = permits - NumReaders;

waiting = waiting - 1;

imwaiting = false;

acquired = true;

}

} lock.unlock();

if (acquired) {

write();

lock.lock(); {

permits = permits + NumReaders;

} lock.unlock();

12

} } }

13

