
Modelling and Simulation ESS101
29 October 2025, Final Exam

This exam contains 10 pages (including this cover page) and 4 problems.

You are allowed to use the following material:

• Modelling And Simulation, Lecture notes for the Chalmers course ESS101, by S. Gros (Annotations
are not allowed. Colored highlights and tabs/bookmarks for quick browsing are allowed.)

• Mathematics Handbook (Beta)

• Physics Handbook

• Chalmers approved calculator

• Formula sheet, appended to the exam.

– Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear
ordering may receive less credit.

– Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan-
tially correct calculations and explanations will receive
partial credit.

– None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you
have probably missed the simple way of doing it.

– The passing grade will be given at 20 points, grade 4 at
27 and the top grade at 34 points.

Best of luck to all !!

TA: Ahmet Tekden, +46 31 772 50 91
TA: Filip Rydin, +46 72 560 00 08
Examiner: Yasemin Bekiroglu, +46 70 148 72 71

Problem Points Score

1 12

2 9

3 7

4 12

Total: 40
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1. (a) (3 points) Consider the system depicted in the following figure where a mass m slides on an inclined
frictionless surface with a spring. The spring stiffness k contributes to potential energy with the
term 1

2kx
2. Gravity is the only force that acts on the sytem. Let x be the distance measured along

the incline, and use the usual term with veloctiy in your Kinetic energy formula. Write down the
corresponding Lagrange function using generalized coordinates.

(b) (3 points) Write Euler Lagrange equations that describe the dynamics of this system.

(c) (3 points) What is the index of the following DAE? (All variables are time dependent.)

ẋ1 = x2

ẋ2 = z
0 = 1

2 (x
2
1 + x2

2 − 2z)

(d) (3 points) What is the index of the following DAE? (All variables are time dependent.)

ẋ1 = x2

ẋ2 = z
0 = 1

2 (x
2
1 + x2

2 − 1)

Solution:
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(a)

(b)
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(c)

2. (a) (3 points) Given the following set of data points: xi, yi = (1, 2), (2, 3), (3, 5), (4, 4), (5, 6) Find the
parameters of the line that best fits the data using the linear least squares method. (Hint: Based
on FN , RN matrices)

(b) (3 points) Consider the model y(t) + ay(t − 1) = bu(t − 1) + e(t) where u is input, show how to
calculate the parameters a and b using linear least squares method. (Hint: Based on FN , RN

matrices)

(c) (3 points) Consider the following systems, which model do they correspond to? Also write their
predictors.

y(t)− 0.5u(t− 1) = 0.2u(t− 2) + e(t)

y(t)− 0.7y(t− 1) = 0.5u(t− 1) + e(t)

y(t)− 0.5y(t− 1) = 0.3u(t− 1) + e(t) + 0.4e(t− 1)

Solution:

(a)
∑

i=1:5 xi = 1 + 2 + 3 + 4 + 5 = 15,
∑

yi = 2 + 3 + 5 + 4 + 6 = 20,∑
xi

2 = 12 + 22 + 32 + 42 + 52 = 55,
∑

xiyi = 1x2 + 2x3 + 3x5 + 4x4 + 5x6 = 69

[a b]
T
= RN

−1FN

RN =

[
1 15/5

15/5 55/5

]
,

FN =

[
20/5
69/5

]
which yields a = 1.3b = 0.9.

(b) [
âN
b̂N

]
=

(
1

N

[ ∑
y2(t− 1) −

∑
y(t− 1)u(t− 1)

−
∑

y(t− 1)u(t− 1)
∑

u2(t− 1)

])−1(
1

N

[
−
∑

y(t)y(t− 1)∑
y(t)u(t− 1)

])

(c) y(t)− 0.5u(t− 1) = 0.2u(t− 2) + e(t) FIR, depends on past inputs.
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ŷ(t|t− 1) = 0.5u(t− 1) + 0.2u(t− 2)

y(t)− 0.7y(t− 1) = 0.5u(t− 1) + e(t) ARX, depends on past inputs and past outputs.

ŷ(t|t− 1) = 0.7y(t− 1) + 0.5u(t− 1)

y(t) − 0.5y(t − 1) = 0.3u(t − 1) + e(t) + 0.4e(t − 1) ARMAX, depends on past inputs, past
outputs and past noise.

ŷ(t|t− 1) = 0.5y(t− 1) + 0.3u(t− 1) + 0.4(y(t− 1)− ŷ(t− 1|t− 2))

3. (a) (4 points) Apply the Newton method to solve the following system

xey = 1,
−x2 + y = 1.

Use the initial guess [x0, y0] = [0, 0]. Calculate the resulting solution from applying Newton iteration
only once (using full step), i.e. [x1, y1].

(b) (3 points) Consider the function f(x) = x4 − 3x3 + 2, use the Newton method to optimize this
function, namely to find the stationary points (minima or maxima) of f(x), starting from the initial
guess x0 = 0.5, and performing one iteration. What would x1 be?

Solution:

(a) f(x, y) =

[
xey − 1

−x2 + y − 1

]
Plugging in the following in the update formula: ∂f(x, y) =

[
ey xey

−2x 1

]
,

det∂f(x, y) = ey + 2x2ey, ∂f(x, y)
−1

= 1
det∂f(x,y)

[
1 − xey

2x ey

]
= 1

1+2x2

[
e−y − x
2xe−y 1

]
Thus,

[
xk

yk

]
=

[
xk−1

yk−1

]
− ∂f(xk−1, yk−1)

−1
.f(xk−1, yk−1)

Beginning with x0 = 0, y0 = 0,

[
x1

y1

]
=

[
0
0

]
− 1

1+02

[
1 0
0 1

] [
−1
−1

]
, which yields x1 = 1,

y1 = 1.

(b) We need to solve f
′
(x) = 0 using Newton. For the update equation we need f

′′
(x). The update

rule becomes xn+1 = xn−f
′
(xn)/f

′′
(xn), plugging in f

′
(x) = 4x3−9x2 f

′′
(x) = 12x2−18x, we

get xn+1 = xn− xn(4xn−9)
6(2xn−3) . Starting from x0 = 0.5, x1 = x0− x0(4x0−9)

6(2x0−3) , we get 0.5−0.2916667

as approximately 0.2083.

4. (a) (3 points) Use Euler’s method with ∆t = 0.2 to calculate an approximate solution to x(0.4) for the
system with the dynamics defined as ẋ(t) = t2 − x(t)2, t > 0, x(0) = 1.

(b) (3 points) What is the approximate solution to x(0.4) when ∆t = 0.1?

(c) (3 points) Given the Butcher tablo below, write the RK equations, is the scheme implicit or explicit?

1/3 1/3 0
1 1 0

3/4 1/4

(d) (3 points) Find the stability function of the scheme represented by the Butcher tablo above.
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Solution:

(a) With the standard Euler method x(t+∆t) ≈ xk+1 = xk+∆tf(xk) the solution to the differential
equation f(x) = ẋ = t2 − x(t)2 is given by xk+1 = xk +∆tf(xk).

For ∆t = 0.2, and x0 = x(0) = 1 we get the sequence

x0 = x(t = 0) = 1

x(t = 0.2) ≈ x1 = x0 + 0.2(02 − x2
0) = 1− 0.2 = 0.8

x(t = 0.4) ≈ x2 = x1 + 0.2(0.22 − x2
1) = 0.8 + 0.2.(0.22 − 0.82) = 0.68

(b) For ∆t = 0.1, and x0 = x(0) = 1 we get the sequence

x0 = x(t = 0) = 1

x(t = 0.1) ≈ x1 = x0 + 0.1(0− 1) = 0.9

x(t = 0.2) ≈ x2 = x1 + 0.1(0.12 − 0.92) = 0.82

x(t = 0.3) ≈ x3 = x2 + 0.1(0.22 − 0.822) = 0.756

x(t = 0.4) ≈ x4 = x3 + 0.1(0.32 − 0.7562) = 0.708

(c) It is implicit as A is not lower diagonal.

K1 = f

(
xk +

∆t

3
·K1,u(tk +

∆t

3
)

)
K2 = f (xk +∆t ·K1,u(tk +∆t))

xk+1 = xk +
3∆t

4
K1 +

∆t

4
K2

(d) From the table we have:

A =

[
1/3 0
1 0

]
, b =

[
3/4
1/4

]
, c =

[
1/3
1

]
.

The stability function is R(µ) = 1 + µb⊤(I − µA)−11.

I − µA =

[
1− µ/3 0
−µ 1

]
Inverting this 2x2 matrix we get

(I − µA)−1 =

[
1

1−µ/3 0
µ

1−µ/3 1

]

then

(I − µA)−11 =

[
1

1−µ/3
1+2µ/3
1−µ/3

]

then

b⊤(I − µA)−11 = 3
4

1
1−µ/3 + 1

4
1+2µ/3
1−µ/3 = 1+µ/6

1−µ/3
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and plugging it in the stability function yields:

R(µ) = 1 + µ 1+µ/6
1−µ/3 = 1+2µ/3+µ2/6

1−µ/3
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Appendix: some possibly useful formula

• Lagrange mechanics is built on the equations:

d

dt

∂L
∂q̇
− ∂L

∂q
= Q, L (q, q̇, z) = T − V − z⊤C, C = 0, ⟨δq, Q⟩ = δW, ∀ δq (1)

The kinetic and potential energy of a point mass are given by:

T =
1

2
mṗ⊤ṗ, V = mgp3 (2)

respectively, where p ∈ R3 is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in the
generalized coordinates q.

• In the case T = 1
2mq̇⊤W q̇ with W constant V = V (q) and C = C (q), the Lagrange equations simplify

to the dynamics in the semi-explicit index-3 DAE form:

ṗ = v (3a)

W v̇ +
∂C

∂q

⊤
z = Q− ∂V

∂q

⊤
(3b)

0 = C (q) (3c)

• The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r (y, z) = 0 (4)

“can be solved” in terms of z for a given y iff the Jacobian ∂r(y,z)
∂z is full rank at the solution. More

specifically, it guarantees that there is a function ϕ (y) such that

r (y, ϕ (y)) = 0 (5)

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

∂z

∂y
= −∂r

∂z

−1 ∂r

∂y
(6)

• For solving a problem r (x) = 0, Newton iterates:

x← x− α
∂r

∂x

−1

r (7)

until r (x) ≈ 0 where α ∈ [0, 1]

• Runge-Kutta methods are described by:

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass

b1 . . . bs

Kj = f

(
xk +∆t

s∑
i=1

ajiKi, u (tk + cj∆t)

)
, j = 1, . . . , s (8a)

xk+1 = xk +∆t

s∑
i=1

biKi (8b)

• For ERK methods, the relationship between the (minimum) number of stages s to the order o is given
by:
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s 1 2 3 4 6 7 9 11 . . .

o 1 2 3 4 5 6 7 8 . . .

Table 1: Stage to order of ERK methods

• Collocation methods use:

ẋ(tk +∆t · τ) ≈ ˙̂x(tk +∆t · τ) =
s∑

i=1

Kiℓi(τ), τ ∈ [0, 1] (9)

x(tk +∆t · τ) ≈ x̂(tk +∆t · τ) = xk +∆t

s∑
i=1

KiLi(τ) (10)

where the Lagrange polynomials are given by:

ℓi(τ) =

s∏
j=1,j ̸=i

τ − τj
τi − τj

, and Li(τ) =

∫ τ

0

ℓi(ξ)dξ (11)

The Lagrange polynomials satisfy the conditions of

Orthogonality:

∫ 1

0

ℓi(τ)ℓj(τ) dτ = 0 for i ̸= j (12a)

Punctuality: ℓi(τj) =

{
1 if j = i
0 if j ̸= i

(12b)

and enforce the collocation equations (for j = 1, . . . , s):

˙̂x(tk +∆t · τj) = f (x̂(tk +∆t · τj), u (tk +∆t · τj)) , in the explicit ODE case (13a)

F
(
˙̂x(tk +∆t · τj), x̂(tk +∆t · τj), u (tk +∆t · τj)

)
= 0, in the implicit ODE case (13b)

F
(
˙̂x(tk +∆t · τj), ẑj , x̂(tk +∆t · τj), u (tk +∆t · τj)

)
= 0, in the fully-implicit DAE case (13c)

• Gauss-Legendre collocation methods select the set of points τ1,...,s as the zeros of the (shifted) Legrendre
polynomial:

Ps (τ) =
1

s!

ds

dτs

[(
τ2 − τ

)s]
(14)

They achieve the order ∥xN − x (tf)∥ = O
(
∆t2s

)
.

• Maximum-likelihood estimation is based on

max
θ

P [ek = yk − ŷk for k = 1, . . . , N |θ] (15)

If the noise sequence is uncorrelated, then

P [ek = yk − ŷk for k = 0, . . . , N |θ] =
N∏

k=1

P [ek = yk − ŷk |θ ] (16)

• The solution of a linear least-squares problem

θ̂ = argmin
θ

1

2
∥Aθ − y∥2Σ−1

e
(17)
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reads as:

θ̂ =
(
A⊤Σ−1

e A
)−1

A⊤Σ−1
e y (18)

and the covariance of the parameter estimation based is given by the formula:

Σθ̂ =
(
A⊤Σ−1

e A
)−1

(19)

• In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-ahead
predictor ŷ(k|k − 1) can be retrieved with

H(z)ŷ(z) = G(z)u(z) + (H(z)− 1)y(z) (20)

• The Gauss-Newton approximation in an optimization problem

min
x

J (x) =
1

2
∥R (x)∥2 (21)

uses the approximation:

∂2J

∂x2
≈ ∂R

∂x

⊤ ∂R

∂x
(22)

• The solution to an LTI system ẋ = Ax+Bu is given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (23)

and the transformation state-space to transfer function is given by:

G(s) = C (sI −A)
−1

B +D (24)

• A =

[
a b
c d

]
, det(A) = ad− bc

• A =

 a b c
d e f
g h i

, det(A) = a.det(

[
e f
h i

]
)− b.det(

[
d f
g i

]
) + c.det(

[
d e
g h

]
)

• A =

[
a b
c d

]
, det(A) = ad− bc, A−1 = 1

det(A)

[
d − b
−c a

]
• α = xTAx, where A is a symmetric matrix and x is n × 1, A is n × n, and A does not depend on x,
then, ∂α

∂x = 2xTA.

• f(x) = eg(x) then f
′
(x) = eg(x)g

′
(x)


