Modelling and Simulation ESS101
29 October 2025, Final Exam

This exam contains 10 pages (including this cover page) and 4 problems.

You are allowed to use the following material:

e Modelling And Simulation, Lecture notes for the Chalmers course ESS101, by S. Gros (Annotations
are not allowed. Colored highlights and tabs/bookmarks for quick browsing are allowed.)

e Mathematics Handbook (Beta)
e Physics Handbook
e Chalmers approved calculator

e Formula sheet, appended to the exam.

— Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear Problem | Points | Score
ordering may receive less credit.
1 12
— Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan- 2 9
tially correct calculations and explanations will receive
partial credit. 3 7
— None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you 4 12
have probably missed the simple way of doing it.
Total: 40

— The passing grade will be given at 20 points, grade 4 at
27 and the top grade at 34 points.

Best of luck to all !

TA: Ahmet Tekden, +46 31 772 50 91
TA: Filip Rydin, +46 72 560 00 08
Examiner: Yasemin Bekiroglu, +46 70 148 72 71
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1. (a) (3 points) Consider the system depicted in the following figure where a mass m slides on an inclined
frictionless surface with a spring. The spring stiffness k contributes to potential energy with the
term %kx? Gravity is the only force that acts on the sytem. Let x be the distance measured along
the incline, and use the usual term with veloctiy in your Kinetic energy formula. Write down the
corresponding Lagrange function using generalized coordinates.

y axis

/ﬁance along

the incline

(b) (3 points) Write Euler Lagrange equations that describe the dynamics of this system.

(c) (3 points) What is the index of the following DAE? (All variables are time dependent.)
X1 = 2
X9 = 2
0=1(a}+23-22)

(d) (3 points) What is the index of the following DAE? (All variables are time dependent.)
X1 = T
XQ =z
0=3(2%+a3-1)

Solution:
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2. (a) (3 points) Given the following set of data points: z;,y; = (1,2),(2,3),(3,5), (4,4), (5,6) Find the
parameters of the line that best fits the data using the linear least squares method. (Hint: Based
on F, Ry matrices)

(b) (3 points) Consider the model y(t) + ay(t — 1) = bu(t — 1) + e(¢) where u is input, show how to
calculate the parameters a and b using linear least squares method. (Hint: Based on Fy, Ry
matrices)

(c¢) (3 points) Consider the following systems, which model do they correspond to? Also write their
predictors.

y(t) — 0.5u(t — 1) = 0.2u(t — 2) + e(¢)
y(t) — 0.7y(t — 1) = 0.5u(t — 1) + e(t)
y(t) — 0.5y(t — 1) = 0.3u(t — 1) + e(t) + 0.4e(t — 1)

Solution:

(@) Yoy =1+2+34+4+5=15 3 y; =2+3+5+4+6 =20,
S =12+ 22 + 32 + 4% + 5% =55, 3wy, = 122 + 223 + 325 + 4a4 + 526 = 69
[a b]" =Ry 'Fy

Ry = [151/5 ;gﬂ

w = o)
/

which yields a = 1.3b = 0.9.
(b)

1- Gl =) (B

(c) y(t) — 0.5u(t — 1) = 0.2u(t — 2) + e(¢) FIR, depends on past inputs.
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vt —1) =0.5u(t — 1) + 0.2u(t — 2)

y(t) — 0.7y(t — 1) = 0.5u(t — 1) + e(t) ARX, depends on past inputs and past outputs.
y(tt—1)=0.7y(t — 1) + 0.5u(t — 1)

Y

(t) = 0.5y(t — 1) = 0.3u(t — 1) + e(t) + 0.4e(t — 1) ARMAX, depends on past inputs, past
outputs and past noise.

y(tlt —1) = 0.5y(t — 1) + 0.3u(t — 1) + 0.4(y(t — 1) — y(t — 1]t — 2))

3. (a) (4 points) Apply the Newton method to solve the following system

xeY =1,
—2?4y=1

Use the initial guess [z, yo] = [0, 0]. Calculate the resulting solution from applying Newton iteration
only once (using full step), i.e. [x1,¥1]-

(b) (3 points) Consider the function f(z) = 2% — 323 + 2, use the Newton method to optimize this
function, namely to find the stationary points (minima or maxima) of f(x), starting from the initial
guess zg = 0.5, and performing one iteration. What would x; be?

(a)

Solution:

ze¥ —1
f(aj?y) - |: *l’2+y*1 :|
. . e¥y  xeY
Plugging in the following in the update formula: df(z,y) = Cop 1|

1 1 —ze¥ e ¥y —=x
det(‘?f(agy) =e¥ + 21‘26?/7 af(x’y) = 7det8}(m,y) |: 9 :| = 71+12z2 |: Swe—y 1 :|

ey
T Tp—1 -1
Thus, = -0 1y YR ) 1, Yk
us [yk} |:yk—1:| f@k—1,y6-1) - f(@r-1, Y1)

o o Ta ] TJo RS o 3
Beginning with x¢p = 0,y = 0, [ " ] = { 0 } — 1307 { 0 1 L which yields 1 =1,
Yy = 1.

We need to solve f (x) = 0 using Newton. For the update equation we need f~ (z). The update

rule becomes 1 = & — f (20)/f (), plugging in f (z) = 42® —922 f" (z) = 1222 — 18z, we
get Tpy1 = Tp — %. Starting from zg = 0.5, 1 = 29 — %, we get 0.5 —0.2916667

as approximately 0.2083.

4. (a) (3 points) Use Euler’s method with At = 0.2 to calculate an approximate solution to x(0.4) for the
system with the dynamics defined as x(t) = 2 — x(¢)2, t > 0, z(0) = 1.

(b) (3 points) What is the approximate solution to x(0.4) when At = 0.17

(¢) (3 points) Given the Butcher tablo below, write the RK equations, is the scheme implicit or explicit?

1/311/3 0
1 1 0
| 3/4 1/4

(d) (3 points) Find the stability function of the scheme represented by the Butcher tablo above.
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Solution:

(a) With the standard Euler method z(t+At) ~ z,11 = zp+Atf(x)) the solution to the differential
equation f(z) = x =2 — z(t)? is given by xj41 = a1, + Atf(ay).

For At =0.2, and o = z(0) = 1 we get the sequence

o = I(t = 0) =1
x(t=02)~ 1z =20+020%—22)=1-02=08
z(t =04) ~xy =z +0.2(0.22 — %) = 0.8 4 0.2.(0.22 — 0.8%) = 0.68

(b) For At =0.1, and zy = 2(0) = 1 we get the sequence

zo=2(t=0)=1

z(t=01)~z1 =20+010—-1)=0.9

z(t =0.2) ~ 2y =z +0.1(0.12 — 0.9%) = 0.82
z(t = 0.3) ~ 3 = 29 + 0.1(0.2% — 0.82%) = 0.756
z(t = 0.4) ~ x4 = v3 +0.1(0.3% — 0.756) = 0.708

(c) Tt is implicit as A is not lower diagonal.

At At
K1 =f (Xk + ? . Kl,u(tk + 3))

Ky =1 (x; + At - Khu(tk + At))

3AtL At
Xg+1 = Xk + TKl + IK2

(d) From the table we have:

o9 -0

1 0 1/4 1

The stability function is R(p) =1+ ub" (I — pA)~11.

_[1-n/3 0
I_”A_[ —p 1}

Inverting this 2x2 matrix we get

1—p/3
then
_1
(I—-pA)~'1= [ﬂz‘ﬁ%]
1—p/3
then

T 171 3 1 11+2p/3 _ 1+4p/6
b (I—pA)~ 1= i1=u3ta 172/3 = 17;/3
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and plugging it in the stability function yields:

1441/6 1424/3412 /6
R(p) =1+ /v‘17;§3 = {zu/é ’
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Appendix: some possibly useful formula
e Lagrange mechanics is built on the equations:

doL oL ) T

—_—— e — = = — — = = 1

$oa 9q=Q Ll@an=T-V-z'C, C=0  (5qQ=0WVYiq (1
The kinetic and potential energy of a point mass are given by:

1 1.
T = §mpr, V = mgps (2)

respectively, where p € R? is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in the
generalized coordinates q.

e Inthecase 7 = %quwq with W constant V =V (q) and C = C(q), the Lagrange equations simplify
to the dynamics in the semi-explicit index-3 DAE form:

p=v (3a)

_ oc’ v’
W~ + q z=Q - 74 (3b)
0=C(a) (3¢)

e The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r(y,z) =0 (4)

“can be solved” in terms of z for a given y iff the Jacobian %’;’z) is full rank at the solution. More

specifically, it guarantees that there is a function ¢ (y) such that

r(y,¢(y)) =0 ()

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

-1
oa__oxtor "
Jdy Jdz Oy

e For solving a problem r (x) = 0, Newton iterates:

—1
X4 X — a% r (7)
until r (x) ~ 0 where o € [0, 1]

e Runge-Kutta methods are described by:
C1 | a11 e Qg s
: : : Kj:f(xk—l—AtZajiKi,u(tk—i—cht)), j=1,...,s (8a)
Co | Gar .o g L

o . b Xpi1 =X, + ALY bK; (8b)

i=1

e For ERK methods, the relationship between the (minimum) number of stages s to the order o is given
by:
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5‘123467911
o1 2 3 4 5 6 7 8

Table 1: Stage to order of ERK methods

e Collocation methods use:

S

X(t + At-7) mx(t + At-7) = Y Kili(r), T€[0,1] (9)
=1
X(te + At 7) = R(ty + At 7) = x5+ ALY K;Li(7) (10)
=1

where the Lagrange polynomials are given by:

s

G = I 2220 md Lo = [ 6o (1)

—
j=lj#i ' Y

The Lagrange polynomials satisfy the conditions of

1
Orthogonality: / Li(m)j(T)dr =0 for i#j (12a)
0
. NS Y

Punctuality: £¢;(;) = { 0 if ji (12b)

and enforce the collocation equations (for j =1,...,s):
X(ty 4+ At - 75) = £ (X(ty + At - 75), u(ty + At -75)), in the explicit ODE case (13a)
F (f{(tk + At -7;),%x(te + At - 75), u(ty + At - Tj)) =0, in the implicit ODE case (13b)

F (f{(tk + At- 1), 25, %(ts + At - 75), u(t, + At - Tj)) =0, in the fully-implicit DAE case (13c)

e Gauss-Legendre collocation methods select the set of points 71, as the zeros of the (shifted) Legrendre
polynomial:

P, (1) = %% {(72 - T)S} (14)

They achieve the order [[xy —x ()| = O (A**).
e Maximum-likelihood estimation is based on

max Plex =y — 4 for k=1,...,N |0] (15)

If the noise sequence is uncorrelated, then

N
Plex =ye — g for k=0,...,N 6] =[] Plex = yx — x| 0] (16)
k=1

e The solution of a linear least-squares problem

6= argmein % | A6 — Y||2E;1 (17)
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reads as:
0=(ATStA) ATy
and the covariance of the parameter estimation based is given by the formula:

S, = (ATS1A)

(18)

(19)

e In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-ahead

predictor §(k|k — 1) can be retrieved with
H(2)j(z) = G(z)u(z) + (H(2) — y(2)
e The Gauss-Newton approximation in an optimization problem
. 1 2
min ()= 5 [R ()|
uses the approximation:

01 _oR” o
ox2  Ox 0x

e The solution to an LTI system x = Ax + Bu is given by:
t
x(t) = ex(0) + / A=) Bu(r)dr
0

and the transformation state-space to transfer function is given by:

G(s)=C(sI—A) " "'B+D

a b
OA—_C d],det(A)adbC
[a b ¢
eA=|d e f ,det(A):a.det([z .:|)—b.det(|:d f])jtc.det({d Z})
¥ - i g 1 g
[a b o -1_ _1 d —b
'A__c d],det(A)_ad—bc,A _det(Aﬁ{ —c a}

(20)

(21)

(22)

o o = x" Ax, where A is a symmetric matrix and x is n x 1, A is n x n, and A does not depend on x,

then, g—i =2xTA.

o f(z)=e9® then f'(z) = 9@ g (z)



