
Modelling and Simulation ESS101
26 October 2022, Final exam

This exam contains 10 pages (including this cover page) and 5 problems.

You are allowed to use the following material:

• Modelling And Simulation, Lecture notes for the Chalmers course ESS101, by S. Gros (with brief
annotations, but cannot contain solutions to the exercises or previous exams)

• Mathematics Handbook (Beta)

• Physics Handbook

• Chalmers approved calculator

• Formula sheet, appended to the exam.

– Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear
ordering may receive less credit.

– Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan-
tially correct calculations and explanations will receive
partial credit.

– None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you
have probably missed the simple way of doing it.

– The passing grade will be given at 20 points, grade 4 at
27 and the top grade at 34 points.

Best of luck to all !!

Examiner: Yasemin Bekiroglu, +46 70 148 72 71
Teaching Assistant: Remi Lacombe, +46 70 716 34 71

Problem Points Score

1 8

2 8

3 11

4 6

5 7

Total: 40
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1. (a) (8 points) Consider a 3D roller-coaster created by a mass m sliding on a surface described by the
(scalar-valued) constraint equation c(p) = 0 (the exact constraint definition is not needed), where
p ∈ R3 is the usual cartesian coordinate vector. The mass is affected by gravity and subject to a
friction force given by F = −mγṗ.

1. (4 points) Determine the Lagrange function for the system.

2. (4 points) Derive the Euler-Lagrange equations.

Solution:

(a) 1. The kinetic and potential energies of the system can be written as (q = p):

T =
1

2
mṗ>ṗ, V = mge>p (1)

where e> =
[

0 0 1
]
. The Lagrange function then reads as:

L = T − V − zc =
1

2
mṗ>ṗ−mge>p− zc (p) (2)

2. The dynamics are constructed using:

d

dt

∂L
∂q̇

>
= mp̈,

∂L
∂q

>
= −mge− z ∂c

∂p

>
(3)

Since we work in cartesian coordinates, the generalized force attached to the friction is
simply Q = F. The model then follows from Euler-Lagrange’s equation:

mp̈ +mge + z
∂c

∂p

>
= −mγṗ (4a)

0 = c(p) (4b)

2. (a) (8 points) Consider the DAE:

ẋ1 = x1 + x2 + z (5a)

ẋ2 = z + u (5b)

0 =
1

2

(
x2

1 + x2
2 − 1

)
(5c)

1. (3 points) Why is it a DAE?

2. (5 points) What is the differential index of (5)?

Solution:

(a) 1. We can answer in a simple or formal way:

• The simple way relies on observing that variable z does not enter as time-differentiated
in (5), it is an algebraic variable and therefore

• For the complex and formal way, we observe that (5) is given by the fully implicit
differential equation:

F (ṡ, s, u) =

 ẋ1 − x1 − x2 − z
ẋ2 − z − u

1
2

(
x2

1 + x2
2 − 1

)
 (6)
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where s =
[
x1 x2 z

]>
. And observe that matrix

∂F

∂ṡ
=

 1 0 0
0 1 0
0 0 0

 (7)

is rank-deficient

2. We observe that (5) is a semi-explicit DAE with

g (x, z, u) =
1

2

(
x2

1 + x2
2 − 1

)
(8)

and ∂g
∂z = 0, hence it is of index larger than 1. In order to compute precisely the differential

index, we need to perform time-differentiations on (5) until it is transformed in an ODE.
Because (5a)-(5b) are already ODEs (functions of z), we can leave them alone, and focus
on (5c). We then observe that:

d

dt
g (x, z, u) =

d

dt

(
1

2

(
x2

1 + x2
2 − 1

))
= x1ẋ1 + x2ẋ2 (9)

Replacing ẋ1, ẋ2 by there expressions from (5a)-(5b), we obtain:

d

dt
g (x, z, u) = x1 (x1 + x2 + z) + x2 (z + u) (10)

which is not yet a differential equations. A second time-derivative delivers:

d2

dt2
g (x, z, u) = ẋ1 (x1 + x2 + z) + ẋ2 (z + u) + x1 (ẋ1 + ẋ2 + ż) + x2 (ż + u̇) (11)

we then can solve d2

dt2 g (x, z, u) = 0 for ż:

ż =
−ẋ1 (x1 + x2 + z)− ẋ2 (z + u)− x1ẋ1 − x1ẋ2 − x2u̇

x1 + x2
(12)

which is an ODE as long as x1 + x2 6= 0.

3. (a) (5 points) Consider the model:

yk + a1yk−1 = b0uk + ek (13)

and the associated data y0,...,N and u0,...,N obtained from applying the input sequence u0,...,N to
the real system, started with yk<0 = 0, and ek is the noise term.

1. (1 point) What kind of model structre is it and why?

2. (2 point) Provide the one-step ahead prediction ŷk of (13).

3. (2 points) Write the criterion that should be minimized to fit the model to that data, organizing
the parameters in a vector θ = [a1 b0]T . Is the least-squares problem linear or nonlinear and
why?

(b) (6 points) Consider the model fitting results in Figure 1 and Figure 2.

1. (4 points) In Figure 1, the data pairs are given as {[x(i), y(i)]} = {[2, 1], [2, 3], [−1,−1]}. Using
a least squares approach capturing the relationship between x and y, ŷ = θ>ϕ (where ϕ is
the regression vector holding the regressors (1, x, ...)), find the values in the parameter vector
θ that corresponds to the model fit in the figure.
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Figure 1: Illustration of three data points and least-squares based model fitting result.

Figure 2: Illustration of raw data points and three different model fitting result.

2. (2 points) Considering the results in Figure 2, comment on which model fit is better and explain
why. Comment on issues with worse model fitting results and how to overcome them.

Solution:

(a) 1. ARX.

2. The one-step ahead predictor reads as:

ŷk = −a1yk−1 + b0uk (14)

3. The mismatch between the data and the predictor is given by:

ek = ŷk − yk = −yk − a1yk−1 + b0uk = d>k θ − yk (15)

where dk =
[
−yk−1 uk

]
.
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The least-squares problem for the ARX model (13) reads as:

min
θ

1

2
‖Dθ − y‖2 (16)

where

D =

 d>0
...

d>N

 , y =

 y0

...
yN

 (17)

The least-squares problem is linear because the regressor Dθ is linear in θ.

(b) 1. Using the data vectors x = [2, 2,−1] and y = [1, 3,−1] in the least-squares estimate where
k = 1 for fitting a line:

θ̂N = R−1
N fN =

( 1

N

N∑
i=1

ϕ(i)ϕ>(i)
)−1 1

N

N∑
i=1

ϕ(i)y(i)

1

N

N∑
i=1

ϕ(i)ϕ>(i) =
1

N



N
∑N
i=1 x(i) ...

∑N
i=1 x

k(i)∑N
i=1 x(i)

∑N
i=1 x

2(i) ...
∑N
i=1 x

k+1(i)
. . .
. . .
. . .∑N

i=1 x
k(i)

∑N
i=1 x

k+1(i) ...
∑N
i=1 x

2∗k(i)

 (18)

1

N

N∑
i=1

ϕ(i)y(i) =
1

N



∑N
i=1 y(i)∑N

i=1 x(i)y(i)
.
.
.∑N

i=1 x
k(i)y(i)

 (19)

The resulting parameter estimate θ̂N = [0, 1]T , that corresponds to a = 0, b = 1 in
ŷ = a+ bx = θ>ϕ.

2. The best fit is the second one as the first one has larger error and the last one overfits
to the data that leads to poor generalization. Increasing model order solves the problem
with the first fitting result and overfitting can be overcome with cross-validation.

4. (a) (4 points) Given the following Butcher tableau

0 0 0 0 0
1
3

1
3 0 0 0

2
3

−1
3 1 0 0

1 1 −1 1 0
1
8

3
8

3
8

1
8

1. (3 points) Write down the corresponding RK method equations.

2. (1 points) Is it an explicit or implicit approach, why? How many stages are there?

(b) (1 point) Consider the following RK method:
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K1 = f (xk,u(tk))

K2 = f
(
xk +

∆t

2
K1 +

∆t

2
K2,u(tk + ∆t)

)
xk+1 = xk +

∆t

2
K1 +

∆t

2
K2

Is the RK scheme explicit or implicit (explain your answer)? How many stages are there?

(c) (1 point) Explain in your own words why “collocation ⊂ IRK”, i.e. why all collocation methods
are IRK methods, but not all IRK methods are collocation methods.

Solution:

(a) 1.

K1 = f (xk,u(tk)) (20a)

K2 = f

(
xk +

∆t

3
K1, u

(
tk +

∆t

3

))
(20b)

K3 = f

(
xk −

∆t

3
K1 + ∆tK2, u

(
tk +

2∆t

3

))
(20c)

K4 = f (xk + ∆tK1 −∆tK2 + ∆tK3, u(tk + ∆t)) (20d)

xk+1 = xk + ∆t

(
1

8
K1 +

3

8
K2 +

3

8
K3 +

1

8
K4

)
(21)

2. Explicit, the tableau is lower triangular, Ks can be computed sequentially, there are 4
stages, order is 4.

(b) Implicit, The Butcher array is not lower triangular, we cannot compute Ks sequentially as in
the Explicit case, we need to use Newton method. It has 2 stages, order is 2.

(c) We know that all collocation methods are implicit RK methods, as the collocation equations
are identical to the IRK equations. That explains the inclusion “collocation ⊂ IRK”. However,
not all IRK methods are collocation methods. This fact is easy to argue by observing that a
collocation method is eventually entirely described by the “checkpoints” τ1,...,s used to build
the polynomials, i.e. we have s “degrees of freedom” to select the collocation method (note that
these checkpoints are themselves entirely defined if one want to achieve the order o = ss). On
the other hand, the Butcher tableau has s2 + 2s entries (a, b, c), and therefore as many degrees
of freedom (even though many choices of Butcher tableau can be useless for the purpose of
integrating the ODE). This mismatch in the number of degrees of freedom explains why IRK
* collocation.

5. (a) (7 points) Considering Newton method,

1. (1 points) When could Newton be unstable where iterations diverge? How could we potentially
overcome this problem?

2. (1 point) When could Newton method fail? Explain.

3. (5 points) Consider the function f : R2 7→ R2, by f(x, y) =

[
x2 + y2 − 4
4x2 − y2 − 4

]
, for which we

construct approximate solutions to the equation f(x, y) = [0, 0]T using Newton method and
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the initial guess x = [x0, y0] = [1, 1]. Calculate the resulting solution from applying Newton
iteration only once, i.e. [x1, y1].

Solution:

(a) 1. Initial guess away from the solution using Full Newton step. We can address this using
reduced Newton steps.

2. When the Jacobian is singular, i.e. the Newton direction is undefined. This is a common
failure mode, when tackling very nonlinear functions and starting with a poor initial guess.

3. ∂f(x,y)
∂x =

[
2x 2y

8x − 2y

]
, det∂f(x, y) = −20xy, ∂f(x, y)

−1
= 1
−20xy

[
−2y − 2y
−8x 2x

]
=[ 1

10x
1

10x
2
5y

−1
10y

]
Thus,

[
xk
yk

]
=

[
xk−1

yk−1

]
− ∂f(xk−1, yk−1)

−1
f(xk−1, yk−1) =[

xk−1

yk−1

]
−

[
1

10xk−1

1
10xk−1

2
5yk−1

− 1
10yk−1

] [
x2
k−1 + y2

k−1 − 4
4x2

k−1 − y2
k−1 − 4

]
[
xk−1

yk−1

]
−

 5x2
k−1−8

10xk−1

5y2k−1−12

10yk−1

 =

 xk−1 −
5x2

k−1−8

10xk−1

yk−1 −
5y2k−1−12

10yk−1


Beginning with x0 = y0 = 1, x1 = 1− 5.12−8

10.1 = 1.3, y1 = 1− 5.12−12
10.1 = 1.7
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Appendix: some possibly useful formula

• Lagrange mechanics is built on the equations:

d

dt

∂L
∂q̇
− ∂L
∂q

= Q, L (q, q̇, z) = T − V − z>C, C = 0, 〈δq, Q〉 = δW, ∀ δq (22)

The kinetic and potential energy of a point mass are given by:

T =
1

2
mṗ>ṗ, V = mgp3 (23)

respectively, where p ∈ R3 is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in the
generalized coordinates q.

• In the case T = 1
2mq̇>W q̇ with W constant V = V (q) and C = C (q), the Lagrange equations simplify

to the dynamics in the semi-explicit index-3 DAE form:

ṗ = v (24a)

W v̇ +
∂C

∂q

>
z = Q− ∂V

∂q

>
(24b)

0 = C (q) (24c)

• The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r (y, z) = 0 (25)

“can be solved” in terms of z for a given y iff the Jacobian ∂r(y,z)
∂z is full rank at the solution. More

specifically, it guarantees that there is a function φ (y) such that

r (y, φ (y)) = 0 (26)

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

∂z

∂y
= −∂r

∂z

−1 ∂r

∂y
(27)

• For solving a problem r (x) = 0, Newton iterates:

x← x− α ∂r
∂x

−1

r (28)

until r (x) ≈ 0 where α ∈ [0, 1]

• Runge-Kutta methods are described by:

c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

Kj = f

(
xk + ∆t

s∑
i=1

ajiKi, u (tk + cj∆t)

)
, j = 1, . . . , s (29a)

xk+1 = xk + ∆t

s∑
i=1

biKi (29b)

• For ERK methods, the relationship between the (minimum) number of stages s to the order o is given
by:
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s 1 2 3 4 6 7 9 11 . . .

o 1 2 3 4 5 6 7 8 . . .

Table 1: Stage to order of ERK methods

• Collocation methods use:

ẋ(tk + ∆t · τ) ≈ ˙̂x(tk + ∆t · τ) =

s∑
i=1

Ki`i(τ), τ ∈ [0, 1] (30)

x(tk + ∆t · τ) ≈ x̂(tk + ∆t · τ) = xk + ∆t

s∑
i=1

KiLi(τ) (31)

where the Lagrange polynomials are given by:

`i(τ) =

s∏
j=1,j 6=i

τ − τj
τi − τj

, and Li(τ) =

∫ τ

0

`i(ξ)dξ (32)

The Lagrange polynomials satisfy the conditions of

Orthogonality:

∫ 1

0

`i(τ)`j(τ) dτ = 0 for i 6= j (33a)

Punctuality: `i(τj) =

{
1 if j = i
0 if j 6= i

(33b)

and enforce the collocation equations (for j = 1, . . . , s):

˙̂x(tk + ∆t · τj) = f (x̂(tk + ∆t · τj), u (tk + ∆t · τj)) , in the explicit ODE case (34a)

F
(

˙̂x(tk + ∆t · τj), x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the implicit ODE case (34b)

F
(

˙̂x(tk + ∆t · τj), ẑj , x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the fully-implicit DAE case (34c)

• Gauss-Legendre collocation methods select the set of points τ1,...,s as the zeros of the (shifted) Legrendre
polynomial:

Ps (τ) =
1

s!

ds

dτs

[(
τ2 − τ

)s]
(35)

They achieve the order ‖xN − x (tf)‖ = O
(
∆t2s

)
.

• Maximum-likelihood estimation is based on

max
θ

P [ek = yk − ŷk for k = 1, . . . , N |θ] (36)

If the noise sequence is uncorrelated, then

P [ek = yk − ŷk for k = 0, . . . , N |θ] =

N∏
k=1

P [ek = yk − ŷk |θ ] (37)

• The solution of a linear least-squares problem

θ̂ = arg min
θ

1

2
‖Aθ − y‖2Σ−1

e
(38)
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reads as:

θ̂ =
(
A>Σ−1

e A
)−1

A>Σ−1
e y (39)

and the covariance of the parameter estimation based is given by the formula:

Σθ̂ =
(
A>Σ−1

e A
)−1

(40)

• In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-ahead
predictor ŷ(k|k − 1) can be retrieved with

H(z)ŷ(z) = G(z)u(z) + (H(z)− 1)y(z) (41)

• The Gauss-Newton approximation in an optimization problem

min
x

J (x) =
1

2
‖R (x)‖2 (42)

uses the approximation:

∂2J

∂x2
≈ ∂R

∂x

> ∂R

∂x
(43)

• The solution to an LTI system ẋ = Ax +Bu is given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (44)

and the transformation state-space to transfer function is given by:

G(s) = C (sI −A)
−1
B +D (45)

• A =

[
a b
c d

]
, det(A) = ad− bc

• A =

 a b c
d e f
g h i

, det(A) = a.det(

[
e f
h i

]
)− b.det(

[
d f
g i

]
) + c.det(

[
d e
g h

]
)

• A =

[
a b
c d

]
, det(A) = ad− bc, A−1 = 1

det(A)

[
d − b
−c a

]
• α = xTAx, where A is a symmetric matrix and x is n × 1, A is n × n, and A does not depend on x,

then, ∂α
∂x = 2xTA.


